

Water for People and the Planet is a high school curriculum unit developed to help students understand where our water comes from and where it goes. This inquiry unit focuses on the connections between groundwater and watershed systems. Lessons are designed for students in general-level science courses who typically have limited interest in learning science. Lessons are intended to help students connect big ideas in science to their own lives and see the relevance and importance of learning science. Included within the unit are connections to personal water use; a recent Mid-Michigan urban flooding event; an exploration of a groundwater pollution case in Battle Creek, Michigan, which contaminated the municipal groundwater supply; and investigations of water supplies and water treatment facilities.

This unit follows a general inquiry and application model. Lessons use a general approach that 1) establishes a problem/purpose, 2) develops a model and provides experiences using the model, 3) provides data for finding patterns, 4) allows students to develop explanations, 5) and applies learning to new situations. Student materials support student small group cooperation, conversations, and co-construction of understanding.

Teacher materials provide embedded assessment scaffolds to help teachers assess how well students are progressing towards the learning goals and suggestions for what to do next in helping students revise their initial ideas about important concepts. A pre-post test and a culminating authentic assessment activity are also included.

General Features of each Lesson

- 1. Teacher Resources
 - A. Learning goals Provides the teacher with an overview of what students should know and be able to do after completing the lesson. Learning goals are divided into
 - Knowledge statements Connected to major standards documents (Benchmarks for Science Literacy and the National Science Education Standards) and local documents (Michigan Curriculum Framework, Lansing Pacing Guide)
 - 2. Objectives Explain what students should be able to do using the knowledge in the knowledge statements.
 - 3. Assessments Provide the context in which students use the knowledge and objectives within the unit.
 - B. Lesson Purpose Explains the purpose of the lesson, how the lesson fits into the instructional approach and sequence, and provides an overview of the lesson activities.
 - C. Lesson Overview Table– Detailed table that provides a list of the main activities, their function, and a brief description of each activity.
 - D. Preconceptions Table Identifies common student preconceptions related to the lesson, the goal conception for students when they complete the lesson, a list of activities that help address the listed preconceptions, and a note to the teacher on what to emphasize within the activities to address the preconception.
 - E. Materials Table Lists the materials needed for each activity.
 - F. Activity Descriptions
 - 1. Estimated Time
 - 2. Function/Rationale Explains how the activity fits into the activity sequence of the lesson.
 - 3. Directions Provides step-by-step directions for the activity
 - 4. Group Suggestions Provides tips or suggestions for guiding student small group activity.
 - Embedded Assessments Provides hints on what to look for in student work and talk to assess how well students are progressing towards achieving the learning goal. Also provides hints on how to proceed if students are not making expected progress.
 - G. Journal Questions Each lesson begins with questions that the teacher can use at the beginning of each day of instruction to connect the day's activities to previous days of instruction. Teachers have flexibility in how they use journal questions as whole class discussion starters, embedded assessment, or small group conversation ideas.
 - H. RT Activities Re-Teach Activities are provided as additional activities that teachers can include if students are not making expected progress towards the learning goals.
 - I. Overhead Masters Can be photocopied onto overhead transparencies.
- 2. Student Resources Student activity guides for each activity.

Water for People and the Planet

- A. Purpose Explains the purpose of each activity to the students in a motivating and comprehensible manner.
- B. Directions for Activities Provide detailed directions for individual and small group activities.
- C. Questions Provide tasks and questions to guide student reasoning and thinking related to the learning goal.
- D. Small Group Scaffolds Tables and charts to help students develop the practices necessary to work together in small groups to accomplish group tasks. These scaffolds encourage individual accountability as well as opportunities for group synthesis of ideas. Students are also encouraged to reflect on their own participation in the group and set goals for their group achievement.

3. Assessments

- A. Embedded assessments are outlined in detail in the teacher resources pages for lessons 3, 4, & 5.
- B. A Pre-Post test is provided that addresses the main learning goals.
- C. The Salt Activity Assessment is an authentic assessment designed to provide students the opportunity to demonstrate both their understanding related to the learning goals and their ability to work as a small group to develop a solution to a surface and groundwater pollution problem.

Learning Goals

Big Idea #1: All life depends on water.

Driving Question: Why Is Water Important to You?

Learning Goal (Knowledge)	Objective (Doing)	Context (Assessment)
Humans rely on water for a variety of uses,	O1a Recognize many of the	A1 Analyze how much
including personal use (drinking, washing,	ways that people use water in	water you use daily.
waste disposal), food production,	their everyday lives.	
manufacturing, and recreation. (4BM6-8 #8 p.	(reflecting)	
69; NSES 9-12F3a, p. 198) People from		
different cultures use different amounts of	O1b Recognize that people	_A2 Compare your use
water. (NSES 9-12F3b, p. 198). The Earth is	from different cultures use	to people from other
three-fourths water, but only a very small	water differently (amounts and	cultures.
portion is fresh and useable by humans.	use). (reflecting)	
(4BM6-8 #8 p. 68-69).		
	O2 - Recognize that the	
	amount of useable freshwater	
	on Earth is minimal and	
	limited. (reflecting)	

Big Idea #2: There is a limited supply of fresh water.

Driving Question: Where Does Water Come From & Where Does It Go?

Learning Goal (Knowledge)	Objective (Doing)	Context (Assessment)
The water falling on the land either runs-off into	O3 Use an understanding of	A3 Given a map of
the surface watershed or infiltrates into the	watersheds to explain how	Michigan, explain how a
groundwater system. (BM4B6-8#7; NSESD5-	water moves through river	pollutant would affect
8SES#6; MCF (EAW) V.3MS3, (EH)V.2MS2,	systems. (using)	different locations.
(EH) V.2MS3) Watersheds and the ground		
water system are interconnected. (MCF(EH)	O4 Apply an understanding of	A4 Given a stratigraphic
V.2MS3)	permeability to explain the	cross-section of a
Watersheds: The watershed is defined as all of	movements of groundwater	groundwater system,
the land area, including the lakes, rivers, and	through confined and	explain how a pollutant
wetlands that drains water into a particular	unconfined aquifers. (using)	will affect different
body of water. (MEGOSE HS8, MCF(EH)		aquifers and wells.
V.2MS3) Groundwater: The groundwater		
system includes aquifers (rocks formations		A5 Build a model and
from which water can be withdrawn for use),		explain the movement of
springs, and the water table. Water moves	O5 Develop/build models that	water through a
underground through pore spaces and cracks	explain how water moves	watershed and through a

in rocks and soil. (MCF(EH) V.2MS3) A variety of factors affect aquifer/groundwater system characteristics, including rock/sediment type, permeability, depth, and thickness. Aquifers can be either confined (bounded above by impermeable layers) or unconfined	through a groundwater system and watershed (constructing).	groundwater model. A5-6 Develop a drawing to explain where the water you use in your house comes from, how
(unbounded).	O6 Explain how water cycles	water gets to your house
Engineered System: Both surface water and	through the natural and	and where it goes when it
groundwater systems provide water for humans. Surface water can be pumped	engineered systems (telling the	leaves.
	story)	
directly from rivers and lakes. Groundwater can		A6 Explain how one
be pumped from aquifers via wells. The water		community's wastewater
is treated, and piped to houses and businesses		(treated or untreated)
for use. Wastewater is cleaned and returned		could be the source of
to the watershed. (LPG)		another community's drinking water.

Big Idea #3: Human actions can both negatively and positively affect the quality and quantity of the water supply.

Driving questions: What are some ways that humans pollute the water? What are some ways that	
humans and nature can clean-up water?	

Learning Goal (Knowledge)	Objective (Doing)	Context (Assessment)
While groundwater and surface water can be	O7 Build/develop a model to	A7 Present a model and
of either high or low quality, human actions	investigate different sources	describe the source of
can either pollute or enhance the quality of the	for and methods for cleaning	pollution and clean-up
water supply (4BM6-8 #8 p. 69; NSES 9-	up groundwater pollution.	method used.
12F4ap. 198). Natural processes can pollute	(constructing)	method docd.
water, and nature has some ways of cleaning	(conoridourig)	A8a Given photos/maps
up pollution (NSES 9-12F4b, c p. 198). Many	O8 Evaluate land use	of a given land use
of these processes are active in wetlands.	scenarios for potential	situation, identify the
Human-caused pollution can easily	groundwater and surface	potential pollution
overwhelm wetland processes.	water pollution sources and	sources and their
	impacts. (reflecting)	impacts.
Humans have developed some ways to clean-		impacto.
up some pollution; some of these techniques		A8b Given several land
are similar to natural clean-up processes.		use proposals for a
Human drinking water and wastewater		specific location, explain
treatment plants utilize processes that are		the impacts of the
similar to clean-up processes that occur in		proposed action on runoff
wetlands (LPG). However, most human		and infiltration.
techniques for cleaning up pollution are		
difficult and expensive. Prevention of human-	O9a Compare the processes	A9 Develop a concept
caused pollution is the most effective way to	that take place in drinking —	map/mind map of a
protect water resources.	water and wastewater	wastewater treatment
·····	treatment plant with natural	plant and explain how the
	water clean-up processes	plant uses clean-up
	(using).	processes for similar to
		natural processes.
	O9b Explain why water	·
	treatment plants are	
	necessary. (using)	

Big Idea #4: Humans must use scientific knowledge to make responsible and accountable decisions about water use in order to maintain a quality water supply for people and the planet.

Driving question: Once it is gone, is it really gone?

Learning Goal (Knowledge)	Objective (Doing)	Context (Assessment)
Renewable/Nonrenewable: Depending on the	O10 Analyze water use	A10 Given different water
type and rate of use, water can either be a	situations to distinguish ways	use situations, explain
renewable, re-useable, or nonrenewable resource. (NSES 9-12F42 p. 198; LPG)	in which water is renewable, re-useable, and non-	whether the water is renewable, non-
Humans need to take action to protect the	renewable (using).	renewable, or re-useable.
water supply. Decisions about the water		
supply should consider		
Data & evidence		
Cost/benefits		
Bias & perspective		
1		

BM = Benchmarks for Science Literacy

NSES = National Science Education Standards

MCF = Michigan Curriculum Framework

LPG = Lansing Pacing Guide

Overarching Practices

1 Use model based reasoning to compare and contrast a model of phenomenon to real situations.

- 2 Make sound interpretations of data and experiences.
- 3 Compare and contrast issues relating to water supply in other parts of the state/world with local and regional water supply issues.
- 4 Read nonfiction text for information and understanding.
- 5 Develop shared understanding through small and large group discussions.

Lesson #:	Description/Purpose	Activity	Approximate	Day#	Total
Lesson Title		Sequence	Time		Days
	This lesson introduces the	1.1 Daily	10 minutes each		
	unit, and establishes the	Journals	day		
	purpose for studying	1.2 Calculate	20-30 minutes		
1: Water is a	about water resources	your personal		1	
Finite Resource		water use			1.5
		1.3 Compare	20-30 minutes		
		your water use			
		with other			
		cultures			
		1.4 The Earth's	20 minutes		
		water			
		1.5 Putting it all	15 minutes		
		together		2	
	This lesson provides the	2.1 Daily	10 minutes each		
	context for all future	Journals	day		
	lessons. It establishes the	2.2 Why do we	10 minutes		
	big picture of the surface	care where			
2: The	water system, the	water comes			
Engineered	groundwater system, and	from?			1.5
System	their connections to where	2.3 The Water	15 minutes		1
	we get our water and	Works			
	where it goes.	2.4 Where does	15 minutes	1	
		it come from and		3	
		where does it			
		go?			

Unit Overview

2.5 (optional) Other systems	10-15 minutes	
2.6 Closing Questions	5 - 10 minutes	

Lesson #: Lesson Title	Description/Purpose	Activity Sequence	Approximate Time	Day#	Total Days
		3.1 Journals	10 Minutes each day		
		3.2 What does	10 Minutes		
		water look like		4	
		underground			
		3.3 Permeability	10-15 Minutes		
		3.4 Aquifers –	5 Minutes		
		What are they?			
	This lessons looks	3.4RT – Soak	15 Minutes on		
3: Groundwater	specifically at the	some rocks	each of 2 days		5
	groundwater system	3.5 Building	30 Minutes		
		groundwater			
	models 5				
		3.6 Exploring the	15-30 Minutes		
		groundwater			
		model			
		3.7 Where would	20 Minutes	6	
		you put a well?			
		3.8 What does it	50 Minutes		
		look like under		6&7	
		Lansing? Well log			
		cross-section			
		3.9 Follow a	20-30 Minutes		
		Water Molecule			
		3.9RT Tracing	15 Minutes	8	
		Water Paths in			
		groundwater			
		Models			
		3.10 Surface	15-20 Minutes		
		water or ground			
		water?			
		3.11 Finish T-	10 Minutes		
		Chart			

Lesson #: Lesson Title	Description/Purpose	Activity	Approximate Time	Day#	Total
Lesson Title		Sequence 4.1 Journals	10 Minutes each day	9	Days
		4.2 May 2004 Flood	10-20 Minutes		
		4.3 Discussion of watersheds	10 Minutes		
		4.4 Make your own island	45 Minutes	9 & 10	
	This lesson looks specifically at the surface	4.5 RT Michigan Relief Map	10 Minutes		5
4: Watersheds	water system (watersheds) and	4.5 Make a Map of Your Island	20 Minutes	11	
	introduces pollution in watersheds	4.5 RT Island/Map Match-Up	20 Minutes		
		4.6 Michigan Watersheds	20-30 Minutes		
		4.7 Causes and Resolutions of Pollution Problems	10 Minutes	12	
	4.8 The flood at Cottonwood Flats	50-60 Minutes			
		4.9 The case of Shaker Heights	20 Minutes	12 & 13	1
		4.9RT Concrete/Sand Demo	10 Minutes		
		5.1 Journals	10 Minutes each day		
	This lesson returns to the	5.2 Contaminate groundwater models	20-30 Minutes	14	
	groundwater system. Students examine	5.3 Methods of clean-up	10 Minutes		4.5 to
5: Groundwater Pollution	pollution in groundwater systems and the connection between	5.4 Clean-up groundwater models	20-30 Minutes	15	5
	groundwater and surface water systems.	5.5 Presentations	30 Minutes		
		5.6 Introduction to Verona Wells	20 Minutes	15 & 16	
		5.7 Verona Wells: Mapping the Problem	30 Minutes	16 & 17	
		5.8 Verona Wells Clean-up	20 Minutes		

Lesson #: Lesson Title	Description/Purpose	Activity Sequence	Approximate Time	Day#	Total Days
		6.1 Journals	10 Minutes each day	18	
		6.2 What is in the water? Small Groups	10-15 Minutes		
6: Water	This lesson looks at what	6.3 What is in the water? Large Group	10-15 Minutes		2.5 to
Treatment	we do with our water and how we clean it up.	6.4 How does nature clean up water? (wetlands video)	15 - 20 Minutes		3
		6.5 How do people clean-up water?	10 Minutes	19	
		6.6 Order the test tubes	10 Minutes		
		6.7 Treating Waste Water	45 minutes (30 minutes , Overnight, 15 minutes`		
		6.8 Bacteria & BOD	15 Minutes embedded in 6.7		
		6.9 Drinking water treatment	15-20 Minutes	20	
		6.10 Waste Water Treatment & Wetlands	20 Minutes		
		7.1 Journals	10 Minutes each day	20	
7: Renewable &	This lessons examines	7.2 Defining Terms	10-20 Minutes		2
Re-useable	water as a finite but renewable and a re- useable resource	7.3 Renewable, re-useable and water	20 Minutes		
		7.4 Putting it together: Role Play	30 Minutes	22	
		7.5 At the Theater – Watch the Role Play	20 Minutes		
End of Unit Assessment: The Salt Problem	This problem synthesizes surface water, groundwater, pollution, and the engineered system	Students read maps and cross- sections to answer questions about a pollution case.	60 Minutes	23	1